

7 TeV "AFB" analyses status (TOP-13-003 and TOP-12-010)

Jacob Linacre (FNAL) for UCSD/UCSB/FNAL group

9th July 2013

Introduction

- We measure the top charge asymmetry, polarization and variables related to the spin correlation in the dilepton final state
- Top and lepton charge asymmetries: $A_{lepC} = \frac{N(|\eta_{l^+}| > |\eta_{l^-}|) N(|\eta_{l^+}| < |\eta_{l^-}|)}{N(|\eta_{l^+}| > |\eta_{l^-}|) + N(|\eta_{l^+}| < |\eta_{l^-}|)}$

(and similarly for A_C)

- **Top polarization** $P_n = \frac{N(\cos(\theta_l^+) > 0) N(\cos(\theta_l^+) < 0)}{N(\cos(\theta_l^+) > 0) + N(\cos(\theta_l^+) < 0)}$
 - measured in the helicity basis
- Two spin correlation variables:
 - Direct (from the correlation between the + and lepton directions)

$$A_{c1c2} = \frac{N(\cos(\theta_l^+) \times \cos(\theta_l^-) > 0) - N(\cos(\theta_l^+) \times \cos(\theta_l^-) < 0)}{N(\cos(\theta_l^+) \times \cos(\theta_l^-) > 0) + N(\cos(\theta_l^+) \times \cos(\theta_l^-) < 0)}$$

- Indirect (lepton azimuthal asymmetry discriminates between correlated and uncorrelated $t\bar{t}$) note, this is a purely leptonic variable (lab frame)
 - $A_{\Delta\phi} = \frac{N(\Delta\phi_{l^+l^-} < \pi/2) N(\Delta\phi_{l^+l^-} > \pi/2)}{N(\Delta\phi_{l^+l^-} < \pi/2) + N(\Delta\phi_{l^+l^-} > \pi/2)}$

General status update

- Data driven background predictions complete
- Systematics complete except for PDF (which is partially complete and seems to be small)
 - when this is done the final results for the papers will be complete
- We're currently updating the paper drafts (TOP-13-003 and TOP-12-010)

Background estimation

- We use raw MC to estimate the backgrounds
- We make cross-checks for the DY and fake components using data-driven methods, and find reasonable agreement
 - DY estimate (after event selection): 45.6 ± 6.8 (stat+syst) events
 - consistent with MC prediction of 39.8 ± 4.9 events
 - Fake estimate (after event selection): 237 +294-237 (stat+syst) events
 - consistent with MC prediction 150 ± 8 events
- We then assign appropriate background normalization systematics (100% for DY and fake, 50% for other backgrounds)
 - we can afford to be very conservative with the background systematic, because it is negligible for all our measurements

Results and Systematics

- Inclusive asymmetry results (in blue) and breakdown of systematics
 - PDF systematics are extrapolated (not all jobs complete yet)

	Asym value	stat uncert (inc unfoldin g syst)	syst uncert without pt rewt	syst uncert incl. 50% pt rewt	syst uncert incl. 100% pt rewt	JER	JES	b-tag SF	Trigger SF	lepton energy scale	PU	mass	scale	tau	top pT reweigh ting	PDF	backgro und
lep charge asymmetry	0.009	0.014	0.006	0.006	0.006	0.000	0.001	0.000	0.000	0.000	0.001	0.002	0.005	0.000	0.000	0.000	0.001
lep azimuthal asymmetry (delta phi)	0.113	0.012	0.006	0.009	0.014	0.000	0.003	0.000	0.000	0.001	0.002	0.003	0.001	0.001	0.012	0.003	0.003
polarization (plus)	-0.009	0.025	0.039	0.039	0.039	0.000	0.012	0.001	0.000	0.001	0.002	0.035	0.007	0.001	0.007	0.009	0.004
polarization (minus)	0.019	0.023	0.024	0.024	0.025	0.000	0.007	0.001	0.000	0.001	0.005	0.019	0.001	0.001	0.008	0.008	0.007
polarization (combined)	0.005	0.019	0.031	0.031	0.032	0.000	0.009	0.001	0.000	0.001	0.004	0.027	0.004	0.001	0.008	0.008	0.006
top spin correlation	-0.020	0.035	0.021	0.021	0.023	0.000	0.011	0.000	0.000	0.001	0.002	0.014	0.009	0.001	0.010	0.006	0.001
top charge asymmetry	-0.011	0.023	0.005	0.005	0.006	0.000	0.003	0.000	0.000	0.000	0.000	0.003	0.003	0.000	0.001	0.000	0.000

 Also have all these systematics for the 2D unfolded results, as well as binby-bin (see plots on next slides)

- Spin correlation (Δ phi)
 - error bars show stat uncertainty, shaded area shows systematic uncertainty

- Spin correlation (direct)
 - error bars show stat uncertainty, shaded area shows systematic uncertainty

Polarisation

error bars show stat uncertainty, shaded area shows systematic uncertainty

- Top charge asymmetry
 - error bars show stat uncertainty, shaded area shows systematic uncertainty

- Top charge asymmetry as a function of Mttbar
 - error bars include stat+syst, small horizontal bars show stat-only component

- Top charge asymmetry as a function of p_{T,ttbar}
 - error bars include stat+syst, small horizontal bars show stat-only component

- Top charge asymmetry as a function of yttbar
 - error bars include stat+syst, small horizontal bars show stat-only component

- Lepton charge asymmetry
 - error bars show stat uncertainty, shaded area shows systematic uncertainty

- Lepton charge asymmetry as a function of Mttbar
 - error bars include stat+syst, small horizontal bars show stat-only component

- Lepton charge asymmetry as a function of pt,ttbar
 - error bars include stat+syst, small horizontal bars show stat-only component

- Lepton charge asymmetry as a function of yttbar
 - error bars include stat+syst, small horizontal bars show stat-only component

Backup

Event selection

- Selection designed to reject events other than ttbar
- Dilepton triggers: dimuon, dielectron or electron-muon
- 2 opposite sign isolated leptons: $p_T > 20$ GeV, |eta| < 2.5 (2.4) for e (μ)
- \geq 2 pf jets with p_T > 30 GeV, |eta| < 2.5
 - loose pfjet ID (L1FastL2L3 corrected)
 - $\Delta R > 0.4$ from all leptons passing analysis selection
 - ≥ Ib tags: CSVM
- MET > 40 GeV (ee and μμ channels only)
- Z veto: 76<m_{II}<106 GeV veto (for SF leptons)
- m_{II}>20 GeV to veto low mass resonances (SF leptons)

Event Samples

- $\bullet \ \, \texttt{TTJets_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1} \;, \, 154 \; pb \\$
- $\verb| TTTo2L2Nu2B_7TeV-powheg-pythia6_Summer11-PU_S4_START42_V11-v1|, 16.2 pb | \\$
- $\qquad \qquad \text{$\tt -TT_TuneZ2_7TeV-mcatnlo/Fall11-PU_S6_START42_V14B-v1/AODSIM} \;, 154 \; pb \\$
- T_TuneZ2_tW-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1, 7.87 pb
- T_TuneZ2_t-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1, 41.92 pb
- $\verb| T_Tune22_s-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1|, 3.19 pb \\$
- Tbar_TuneZ2_tW-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1, 7.87 pb
- ullet Tbar_TuneZ2_t-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1, $22.65~\mathrm{pb}$
- Tbar_TuneZ2_s-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1, 1.44 pb
- WJetsToLNu_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1,31314 pb
- DYJetsToLL_TuneD6T_M-50_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1, 3048 pb
- DYToEE_M-20_CT10_TuneZ2_7TeV-powheg-pythia_Summer11-PU_S4_START42_V11-v1 , 1666 pb
- DYTOMuMu_M-20_CT10_TuneZ2_7TeV-powheg-pythia_Summer11-PU_S4_START42_V11-v1, 1666 pb
- $\bullet \ \mathtt{DYToTauTau_M-20_CT10_TuneZ2_7TeV-powheg-pythia-tauola_Summer11-PU_S4_START42_V11-v1}\ , 1666\ pb \ \mathtt{DYToTauTau_M-20_CT10_TuneZ2_7TeV-powheg-pythia-tauola_Summer11-PU_S4_START42_V11-v1 \ , 1666\ pb \ \mathtt{DYToTau_M-20_CT10_TuneZ2_7TeV-powheg-pythia-tauola_Summer11-PU_S4_START42_V11-v1 \ , 1666\ pb \ \mathtt{DYToTau_M-20_CT10_TuneZ2_7TeV-powheg-pythia-tauola_Summer11-PU_S4_START42_V11-v1 \ , 1666\ pb \ , 1$
- $\bullet \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ 3319.61 \ pb \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ 3319.61 \ pb \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ 3319.61 \ pb \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_TuneZ$
- DYTOMuMu_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1, 3319.61 pb

- $\bullet \ \mathtt{DYToTauTau_M-10To20_CT10_TuneZ2_7TeV-powheg-pythia-tauola_Summer11-PU_S4_START42_V11-v2\ , \ 3319.61pb \\$
- WWJetsTo2L2Nu_TuneZ2_7TeV-madgraph-tauola_ummer11-PU_S4_START42_V11-v1, 4.783 pb
- $\bullet \ \texttt{WZJetsTo2L2Q_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1, 1.786 \ pb} \\$
- $\verb| WZJetsTo3LNu_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1, 0.856~pb | with the content of th$
- ZZJetsTo2L2Nu_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1, 0.30 pb
- ZZJetsTo2L2Q_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1, 1.0 pb
- $\qquad \texttt{ZZJetsTo4L_TuneZ2_7TeV-madgraph-tauola/_Summer11-PU_S4_START42_V11-v1}, \ 0.076 \ pb \\$
- /Wprime_SM_400_Madgraph_v2/yanjuntu-Wprime_SM_400_Madgraph_v2-f3d3f52ad6235ba5a3ccb05162c152b9/USER
- AxigluonR_2TeV_ttbar_MadGraph_sergo-AxigluonR_2TeV_ttbar_MadGraph

Data: May I0th rereco + Prompt v4 + Aug05th rereco + Prompt v6 + 2011B Data (5.0 fb⁻¹)

Triggers

- Double Electron
 - HLT_Ele17_CaloIdL_CaloIsoVL_Ele8_CaloIdL_CaloIsoVL
 - HLT_Ele17_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL_Ele8_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL
 - HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL
- Double Muon
 - HLT_DoubleMu7
 - HLT_Mu13_Mu7
 - HLT_Mu13_Mu8
 - HLT_Mu17_Mu8
- Electron Muon
 - HLT_Mu17_Ele8_CaloIdL
 - HLT_Mu8_Ele17_CaloIdL
 - HLT_Mu17_Ele8_CaloIdT_CaloIsoVL
 - HLT_Mu8_Ele17_CaloIdT_CaloIsoVL

Trigger efficiencies

For the high p_T dilepton triggers, the efficiencies listed in Table 1, Table 2, Table 3 and Table 4 are applied to ee, $\mu\mu$ and $e\mu$ Monte Carlo Events. Details of the measurement of the trigger efficiencies are described in [12].

Table 1: The efficiency of the leading leg requirement for the double electron trigger, averaged over the full 2011 data.

Measurement	$0.0 \le \eta < 1.5$	$1.5 \le \eta < 2.5$
$20 \le p_T \le 30$	0.9849 ± 0.0003	0.9774 ± 0.0007
$p_T > 30$	0.9928 ± 0.0001	0.9938 ± 0.0001

Table 2: The efficiency of the trailing leg requirement for the double electron trigger, averaged over the full 2011 data.

Measurement	$0.0 \le \eta < 1.5$	$1.5 \le \eta < 2.5$
$20 \le p_T \le 30$	0.9923 ± 0.0002	0.9953 ± 0.0003
$p_T > 30$	0.9948 ± 0.0001	0.9956 ± 0.0001

Table 3: The efficiency of the leading leg requirement for the double muon trigger, averaged over the full 2011 data.

Measurement	$0.0 \le \eta < 0.8$	$0.8 \le \eta < 1.2$	$1.2 \le \eta < 2.1$	$2.1 \le \eta < 2.4$
$20 \le p_T \le 30$	0.9648 ± 0.0007	0.9516 ± 0.0013	0.9480 ± 0.0009	0.8757 ± 0.0026
$p_T > 30$	0.9666 ± 0.0003	0.9521 ± 0.0005	0.9485 ± 0.0004	0.8772 ± 0.0012

Table 4: The efficiency of the trailing leg requirement for the double muon trigger, averaged over the full 2011 data.

Measurement	$0.0 \le \eta < 0.8$	$0.8 \le \eta < 1.2$	$1.2 \le \eta < 2.1$	$2.1 \le \eta < 2.4$
$20 \le p_T \le 30$	0.9655 ± 0.0007	0.9535 ± 0.0013	0.9558 ± 0.0009	0.9031 ± 0.0023
$p_T > 30$	0.9670 ± 0.0003	0.9537 ± 0.0005	0.9530 ± 0.0004	0.8992 ± 0.0011

Lepton selections

- Electron selection
- $p_T > 20 \text{ GeV}; |\text{eta}| < 2.5$
- VBTF90 (cuts tightened to match CaloId+TrkIdVL HLT requirements)
- d0 (PV) < 0.04 cm, dz (PV) < 1 cm --calculated w.r.t. Ist good DA PV
- no muon $\Delta R < 0.1$
- <= I miss hits, |dist| < 0.02 cm and < 0.02, CMS AN-2009-159</pre>
- Veto electrons with a supercluster in the transition region (1.44 < | eta | < 1.56)
- iso/p_T < 0.15 (EB pedestal subtraction I GeV, no fastjet correction)
- ecaliso/ $p_T < 0.2$

- Muon selection
- $p_T > 20 \text{ GeV}; |\text{eta}| < 2.4$
- global and tracker muon
- $chi^2/ndf < 10$
- nValidHits > 10 -- to be updated to frac of validHits
- valid StandAloneHits > 0
- d0 (PV) < 0.02 cm, dz (PV) < 1 cm --calculated w.r.t. 1st good DA PV
- $(p_T)/p_T < 0.1$
- iso/ p_T < 0.15 (no fastjet correction)

Preselection Yields (5.0 fb⁻¹)

Sample	ee	$\mu\mu$	$\mathrm{e}\mu$	all
ttdil	1535.60 ± 9.82	1813.86 ± 10.31	5747.85 ± 18.69	9097.31 ± 23.50
ttotr	39.74 ± 1.63	4.06 ± 0.46	93.09 ± 2.41	136.88 ± 2.94
wjets	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
DYee	16.85 ± 3.28	0.00 ± 0.00	0.00 ± 0.00	16.85 ± 3.28
DYmm	0.00 ± 0.00	22.96 ± 3.66	3.80 ± 1.60	26.76 ± 3.99
DYtautau	13.35 ± 2.92	6.59 ± 1.94	31.22 ± 4.21	51.16 ± 5.48
VV	8.27 ± 0.44	10.20 ± 0.47	27.90 ± 0.81	46.37 ± 1.03
tw	72.54 ± 2.11	86.77 ± 2.23	289.37 ± 4.20	448.68 ± 5.20
Total MC	1686.35 ± 11.10	1944.43 ± 11.35	6193.23 ± 19.84	9824.00 ± 25.41
Data	1631.00 ± 40.39	1964.00 ± 44.32	6229.00 ± 78.92	9824.00 ± 99.12

Uncertainties are statistical only

- MC events are weighted to match trigger efficiency, b tagging efficiency, and number of vertices distribution in data
- We use MC@NLO for the $t\bar{t}$ component
 - normalized so that total MC yield matches data
 - ullet ${
 m t}ar{
 m t} o\ell^+\ell^-$ contributes 92% of the total yield

Data-driven BG estimates: DY

- Estimate ee and $\mu\mu$ Drell-Yan using the method in CMS AN-2009-023: $R_{out/in}$ method
- Use data in Z peak to predict DY yields in the signal region by propagating via the MC ratio out/in-peak

- Estimate (after event selection): 45.6 ± 6.8 (stat+syst) events
 - consistent with MC prediction of 39.8 ± 4.9 events

Data-driven BG estimates: Fakes

• Estimate contribution from fake leptons using the datadriven tight-to-loose method described in CMS

AN-2010/257

- lacktriangle measure tight-to-loose fake rates as a function of lepton P_{T} and eta
- estimate number of fakes in data based on number of fakeable object (FOs). Weight each lepton+FO event by:
- use MC to account for signal contamination in the FO sample
- fake background primarily from ttbar- decaying to lepton+jets

$$\epsilon_{\text{fake}} (p_{\text{T}}, \eta) = \frac{N_{\text{pass tight}} (p_{\text{T}}, \eta)}{N_{\text{loose}} (p_{\text{T}}, \eta)}$$

$$w_i = \frac{\epsilon_{\text{fake}}(p_{\text{Ti}}, \eta_i)}{1 - \epsilon_{\text{fake}}(p_{\text{Ti}}, \eta_i)}$$

- Estimate (after event selection): 237 + 294-237 (stat+syst) events
 - consistent with MC prediction 150 ± 8 events